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Abstract

Gears are one of the most common and important machine components in many advanced machines. An improved

understanding of vibration signal is required for the early detection of incipient gear failure to achieve high reliability.

This paper mainly consists of two parts: in the first part, a 6-degree-of-freedom gear dynamic model including localized

tooth defect has been developed. The model consists of a spur gear pair, two shafts, two inertias representing load and

prime mover and bearings. The model incorporates the effects of time-varying mesh stiffness and damping, backlash,

excitation due to gear errors and profile modifications. The second part consists of signal processing of simulated and

experimental signals. Empirical mode decomposition (EMD) is a method of breaking down a signal without leaving a

time domain. The process is useful for analysing non-stationary and nonlinear signals. EMD decomposes a signal into

some individual, nearly monocomponent signals, named as intrinsic mode function (IMF). Crest factor and kurtosis have

been calculated of these IMFs. EMD pre-processed kurtosis and crest factor give early detection of pitting as compared to

raw signal.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Dynamic modelling of the gear vibration is a useful tool to study the vibration response of a geared system
under various gear parameters and operating conditions. A comprehensive review of mathematical models
used in gear dynamics, published before 1986, has been presented by Ozguven and Houser [1]. In this review,
gear dynamic models without defects have been discussed. In the past few years, researchers have been
working on the gear dynamic models which include defects like pitting, spalling, crack and broken tooth.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

c1, c2 viscous damping coefficients of pinion
and gear bearings, respectively

ca, cb viscous damping coefficients of the first
and second meshing tooth pairs, respec-
tively

cm mesh damping
ct1, ct2 viscous damping coefficients of pinion

and gear shafts, respectively
ID, I1, I2, IL mass moment of inertia of drive,

pinion, gear and load, respectively
k1, k2 pinion and gear bearing stiffness, respec-

tively

ka, kb the single tooth pair stiffness at contact
points A and B

kh the unit width Hertzian stiffness
km time-varying mesh stiffness
kt1, kt2 torsional stiffness of pinion and gear

shafts, respectively
m1, m2 masses of pinion and gear, respectively
R1, R2 base circle radii of pinion and gear,

respectively
TD, TL drive and load torques, respectively
y1, y2 translational displacement of pinion and

gear, respectively
yD, y1, y2, yL angular displacement of drive,

pinion, gear and load

A. Parey et al. / Journal of Sound and Vibration 294 (2006) 547–561548
A review of spur gear dynamic models including defects has been done by Parey and Tandon [2]. The study
suggests that little work has been done on modelling of gear vibration with defect and an accurate analytical
procedure to predict gear vibrations in the presence of local tooth fault has yet to be developed.

A wide variety of dynamic models, from single degree of freedom to multi degrees of freedom, are available
to predict the response of gear vibration. To increase the accuracy of the dynamic model for prediction of
vibration response, researchers either increase the degrees of freedom from single to multi degrees, or include
various effects like nonlinearity of the elements, excitation due to gear errors, time variation of mesh stiffness,
etc. in the model, or both. The purpose of the dynamic simulation plays a very important role in constructing a
suitable model. The purpose of this paper is to develop a multi-degree-of-freedom nonlinear model for a spur
gear pair that can be used to study the effect of lateral–torsional vibration coupling on vibration response in
the presence of localized tooth defect. A typical fault signal is assumed to be impulsive in nature because of the
way it is generated [3]. The surface defects on gear tooth will produce pressure fluctuations in the lubricant and
the oil film between sliding surfaces may also momentarily break down, causing impulsive contact to occur. In
an earlier work by Tandon and Choudhary, an analytical model for the prediction of the vibration response of
rolling element bearing due to localized defect has been developed using impulse phenomenon [4]. The effect of
changes in magnitude and phase of the mesh stiffness has been used by the researchers to simulate the effects
of surface pitting and wear [5–7]. But no work has been reported using the impulse phenomenon to simulate
the pitting in gear pair. In this paper, a decaying sinusoidal pulse has been used to simulate the effect of pitting
in the gear dynamic model.

A wide variety of signal-processing techniques are available for gear fault detection. These techniques can be
classified as signal processing based on time domain signal [7–12], frequency domain signal [13–15] and
time–frequency domain signal [16–20]. Each technique has some advantages and some limitations over the
other.

Recently, empirical mode decomposition (EMD) has been introduced for the analysis of nonlinear and non-
stationary signals [21]. EMD is a time-adaptive decomposition operation of the signal, which decomposes the
signal into a set of complete, and almost orthogonal components, named as intrinsic mode function (IMF).
IMFs are almost mono components and represent simple oscillatory modes imbedded in the signal. Crest
factor and kurtosis have been performed on different IMFs for early detection of the pitting. Crest factor and
kurtosis are statistical parameters that give a measure of the impulsiveness of a signal, and therefore they are
well suited for the developed model.

2. Generation of the mathematical model

In most of the gear pair systems, the coupling between the torsional vibration modes is controlled by mesh
stiffness; therefore a 2-degree-of-freedom semi-definite mathematical model representing only the torsional
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vibration may yield a quite accurate result in most practical cases. [22]. When the torsional mode which is
controlled by mesh stiffness is coupled with other vibration modes, in such problems, increasing the degrees of
freedom of the model by including the compliances of other element is more important than elaborating the
single-degree-of-freedom model with some secondary effects. The model described in this paper is based on the
model developed by Ozguven [23]. This model is modified by excluding some effect for simplicity, and
including impulse excitation generated due to localized tooth defect.

2.1. Six-degree-of-freedom nonlinear model

The model considered here consists of two gears on the two shafts, which are connected to a load and a
prime mover. The model includes four inertias, namely load, prime mover, pinion and gear. The torsional
compliances of shafts and the transverse compliances of bearings combined with those of shafts are included
in the model. Both bearing and shaft dampings are also considered in the model. The transverse vibrations
of the gears are considered along the line of action. With this model, the response, including modulations
due to transverse and torsional vibration stemming from bearing and shaft compliances, can be
calculated.

The 6-degree-of-freedom nonlinear model is shown in Fig. 1. It has four angular rotations (of prime mover,
pinion, gear and load) and two translations (of pinion and gear) along the line of action. The effects that are
included in the mathematical model and thus considered in the dynamic analysis are: time-varying mesh
stiffness and mesh damping; torsional compliances of pinion and gear shafts; material damping in shafts
(linear viscous); bearing compliances and dampings (linear viscous); transverse compliances of shafts; inertia
of prime mover and load; drive and load torques and backlash.

The governing equations of motion for the model depicted in Fig. 1 can be written as follows (a list of
symbols is given in the Nomenclature):

IDy
00
D þ ct1ðy

0
D � y01Þ þ kt1ðyD � y1Þ ¼ TD, (1)

I1y
00
1 þ ct1ðy

0
1 � y0DÞ þ kt1ðy1 � yDÞ ¼ �W 0R1, (2)

I2y
00
2 þ ct2ðy

0
2 � y0LÞ þ kt2ðy2 � yLÞ ¼W 0R2, (3)

ILy
00
L þ ct2ðy

0
L � y02Þ þ kt2ðyL � y2Þ ¼ �TL, (4)

m1y
00
1 þ c1y01 þ k1y1 ¼W 0, (5)

m2y
00
2 þ c2y

0
2 þ k2y2 ¼ �W 0. (6)

Here, W0 is the dynamic mesh force given by

W 0 ¼ kmðy1R1 � y2R2 þ y2 � y1Þ þ cmðy
0
1R1 � y02R2 þ y02 � y01Þ (7)

and 0 denotes differentiation with respect to time.

2.2. Incorporation of profile error

Since every gear has some deviation from the actual involute profile, it has to be taken into account. For a
given pair of teeth, the value of an error is random and it can be denoted by [24]

En ¼ ½1� rð1� liÞ�e, (8)
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Fig. 1. The 6-degree-of-freedom nonlinear model.
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where e is the maximum error value; r is the coefficient of error variation, range (0–1); and li is a random value
whose elements are normally distributed with mean 0, variance 1 and standard deviation 1 and range (0–1); n

is the number of teeth pair.

2.3. Incorporation of eccentricities

The influence of eccentricities can be investigated by incorporating it in the error function. The eccentricities
can be modelled as [24]

E ¼ e1 sinðy1Þ þ e2 sinðy2Þ, (9)

where e1 is the eccentricity of gear 1 and e2 the eccentricity of gear 2.



ARTICLE IN PRESS

A

B

T1

T2

θ1

θ2

Fig. 2. Response of a decaying half-sine pulse train.
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2.4. Incorporation of defect

It has been pointed out in Ref. [3] that the severity, extent and age of damage can be better represented by
pulses. The height of the pulse also has a significant influence on the amplitude. This also changes with the
severity and age of the defect and may even decrease with the advancement of the defect [3]. Rectangular
pulses could be considered as the simplest impulsive loading, but in practice the shape of the signal will be
controlled by the nature of the system in addition to the type of exciting force. In a gear pair system due to the
deformation and elasticity of the contacting components, neither the force nor the response time history
will have the shape of rectangular pulses. To model the signal more representatively, half-sine pulses
are considered. The response of the practical system can be best represented by decaying sinusoid as shown in
Fig. 2, given by

xðtÞ ¼ K=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q� �
e�zo0t sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
o0tþ sin�1 2z

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q� �� �
, (10)

where K ¼ k=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
and k is the height of the pulse; z is the damping ratio; frequency of generated pulse

o0 ¼ p=Dt; pulse width Dt ¼ b=va; b is the defect width in profile direction and va is the relative velocity at the
defect point.

After including the profile error, eccentricities and defect, the dynamic mesh force W0 can be modified as

W ¼W 0 þ kaðE1 þ EÞ þ kbðE2 þ EÞ þ c1ðE1 þ EÞ þ c2ðE2 þ EÞ þ khðxðtÞÞf , (11)

where f is the defect width in face direction.
So, by putting Eq. (11) in Eqs. (2), (3), (5) and (6) in place of W0 and solving the differential equations, we

can find the response of the system at the desired place.

2.5. Solution

To solve the differential equations (1)–(6), each second-order differential equation is written in the form of
two first-order differential equations. Thus, 12 nonlinear first-order differential equations were obtained.
These equations were written such that each equation contains the time derivative of only one variable. These
equations were solved by MATLAB code equation solvers.
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2.6. Calculation of mesh stiffness

The mesh stiffness between an engaged gear pair consists of two parts: one associated with the local
Hertzian deformation and the other associated with the tooth bending deflection. The unit width Hertzian
stiffness kh resulting from the tooth surface contact was first approximated by Yang [25] as

kh ¼ pE=4ð1� n2Þ, (12)

where E is Young’s modulus and n is the Poisson’s ratio.
An equation for the calculation of single tooth bending stiffness for the addendum-modified involute gear

has been proposed by Kuang and Yang [26]. The unit width stiffness ki(r) for a single tooth i at a loading
position r can be approximated using the following equation:

kiðrÞ ¼ ðA0 þ A1X iÞ þ ðA2 þ A3X iÞ½ðr� RiÞ=ð1þ X iÞm�, (13)

where the bending stiffness per unit tooth width ki(r) is measured in N/mm/mm .Variable Xi denotes the
addendum modification coefficient. The radial distance r, radius of pitch circle R and the module m are
measured in the same unit (mm). The curve-fitted coefficients are:

A0 ¼ 3:867þ 1:612Ni � 0:02916N2
i þ 0:0001553N3

i ,

A1 ¼ 17:06þ 0:7289Ni � 0:01728N2
i þ 0:0000999N3

i ,

A2 ¼ 2:637� 1:222Ni þ 0:02217N2
i � 0:0001179N3

i ,

A3 ¼ � 6:330� 1:033Ni þ 0:02068N2
i � 0:0001130N3

i , ð14Þ

where Ni is the number of teeth.
The single tooth pair stiffness ka and kb at contact points A and B, as shown in Fig. 3, can be approximated

by combining the unit width stiffness k1(r1A), k2(r2A), k1(r1B), k2(r2B) and kh of mating teeth as spring
connected in series:

1=ka ¼ 1=k1ðr1AÞ þ 1=k2ðr2AÞ þ 1=kh, (15)

ka=F ¼ ½k1ðr1AÞk2ðr2BÞkh�=½k1ðr1AÞk2ðr2AÞ þ k1ðr1AÞkh þ k2ðr2AÞkh�, (16)

1=kb ¼ 1=k1ðr2BÞ þ 1=k2ðr2BÞ þ 1=kh, (17)

kb=F ¼ ½k1ðr1BÞk2ðr2BÞkh�=½k1ðr1BÞk2ðr2AÞ þ k1ðr1AÞkh þ k2ðr2AÞkh�, (18)

where ka and kb represent the single tooth pair stiffness of gears 1 and 2 at mating points A and B. They are
measured in (N/mm). F denotes the tooth width of a spur gear. In this system, the mesh stiffness of engaged
gear pair alternates with the change of contact position and the number of load-sharing tooth pairs.
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3. Signal-processing technique

As mentioned in Section 1, among various signal-processing techniques crest factor and kurtosis analysis
have been used for analysing EMD pre-processed signal for the early detection of fault. In this section, crest
factor, kurtosis and EMD have been explained.
3.1. Crest factor

The crest factor corresponds to the ratio between the crest value (maximum absolute value reached by the
function representative of the signal during the considered period of time) and the root mean square (rms)
value (efficient value) of the signal:

Crest factor ¼ Crest value=rms value ¼
sup jxðnÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1=NÞ
PN

n¼1½xðnÞ�
2

q , (19)

where N is the number of samples taken within the signal and x(n) the time domain signal.
3.2. Kurtosis

It is a statistical analysis of the time domain signal, and looks at the fourth moment of the spectral
amplitude difference from the mean level.

Mathematically,

K ¼ 1=s4
XN

i¼1

ðxi � x0Þ4=N, (20)

where s4 is the variance square, N is the number of samples, x0 is the mean value of samples and xi is an
individual sample. A normal distribution has a kurtosis value of 3 and it shows the good condition.
3.3. Empirical mode decomposition (EMD)

The EMD method is developed from the simple assumption that any signal consists of different simple
intrinsic modes of oscillations. Each linear or nonlinear mode will have the same number of extrema and zero-
crossings. There is only one extremum between successive zero-crossings. Each mode should be independent of
the others. In this way, each signal could be decomposed into a number of IMFs, each of which must satisfy
the following conditions [21]:
(1)
 In the whole data set, the number of extrema and the number of zero-crossings must either equal or differ
at most by one.
(2)
 At any point, the mean value of the envelope defined by local maxima and the envelope defined by the
local minima is zero.
An IMF represents a simple oscillatory mode compared with the simple harmonic function.
With the definition of EMD, any signal x(t) can be decomposed as follows [21]:
Firstly identify all the local extrema, and then connect all the local maxima by a cubic spline line as the

upper envelope. Repeat the procedure for the local minima to produce the lower envelope. The upper and
lower envelopes should cover all the data between them. The mean of upper and lower envelope values is
designated as m1, and the difference between the signal x(t) and m1 is the first component, h1; i.e.

xðtÞ �m1 ¼ h1. (21)

Ideally, if h1 is an IMF, then h1 is the first component of x(t).
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If h1 is not an IMF, h1 is treated as the original signal and the above procedure is repeated; then

h1 �m11 ¼ h11. (22)

After repeated sifting, i.e. up to k times, h1k becomes an IMF, that is

h1ðk�1Þ �m1k ¼ h1k. (23)

Then it is designated as

c1 ¼ h1k. (24)

The first IMF component is obtained from the original data. c1 should contain the finest scale or the shortest
period component of the signal.

Separating c1 from x(t), We get

r1 ¼ xðtÞ � c1, (25)
Gear 

Motor

Brake

Pinion

Bearings Bearings

Fig. 4. Schematic representation of the geared system.

Table 1

Geared system data

Parameter Pinion Gear

Speed (rpm) 1000 952

Number of teeth 20 21

Face width (m) 0.015 0.03

Shaft diameter (m) 0.092 0.110

Module (m) 0.01 0.01

Pressure angle 201 201

Addendum coefficient 1.0 1.0

Dedendum coefficient 1.4 1.4

Mass (N) 36 80

Shaft torsional stiffness (Nm/rad) 1917 3383

Bearing stiffness (N/m) 108 109

Shaft viscous damping coefficient (N s/rad) 0.268881 0.357188

Bearing viscous damping coefficient (N s/m) 8740.15 8740.15

Drive torque (Nm) 200



Table 2

Simulated defect

Defect number Width in profile direction (mm) Length in face direction (mm) Location of defect

0 No defect

1 1 0.25 Near pitch line

2 1 0.5 Near pitch line

3 1 0.75 Near pitch line

4 1 1.0 Near pitch line

5 1 1.25 Near pitch line

6 1 1.5 Near pitch line

7 1 1.75 Near pitch line

8 1 2.0 Near pitch line

9 1 2.25 Near pitch line

10 1 2.5 Near pitch line

Fig. 5. Simulated acceleration for different defect length.

A. Parey et al. / Journal of Sound and Vibration 294 (2006) 547–561 555
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where r1 is treated as the original data and the above process is repeated. The second IMF component c2 of
x(t) could be obtained. If the process as described above is repeated n times, then n-IMFs of signal x(t) can be
obtained. Then,

r1 � c2 ¼ r2

:

:

rn�1 � cn ¼ rn. ð26Þ

The decomposition process can be stopped when rn becomes a monotonic function, from which no more IMFs
can be extracted. By summing up Eqs. (25) and (26),

xðtÞ ¼
Xn

j¼1

cj þ rn. (27)

Thus, one can achieve a decomposition of the signal into n-empirical modes and a residue rn, which is the mean
trend of x(t). The IMFs c1; c2; . . . ; cn include different frequency bands ranging from high to low. The
frequency components contained in each frequency band are different and they change with the variation of
signal x(t), while rn represents the central tendency of signal x(t).

4. Implementation of EMD

4.1. Numerical examples

The mechanical system under consideration is shown in Fig. 4. The different dynamic and design
parameters of the gear system are given in Table 1. The mathematical model developed in Section 2 is solved
using gear parameters given in Table 1. The model is solved for different defect conditions as given in Table 2.
Some simulated results for two revolutions of the pinion are shown in Fig. 5. Crest factor and kurtosis value
have been calculated for all the simulated defect width. Fig. 6 shows the plot for these values. The signal is
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decomposed by the EMD method as described in Section 3.3. The first 10 IMFs were calculated. Crest factor
and kurtosis values have been calculated of these IMFs. Fig. 7 shows the crest factor values and Fig. 8 shows
the kurtosis values for different simulated defect widths of each IMF.
4.2. Experimental example

The recordings of vibration signal were carried out at CETIM, France on a gear system with a train of
gearing, with a ratio of 20/21 functioning continuously until its destruction. Table 1 gives the details of the
gear test rig parameters. The test was of 13 days length with a daily mechanical appraisal; measurements were
collected every 24 h. A fault was found on day 10. The acceleration signals for days 2, 10, 11, and 12 have been
shown in Fig. 9. The kurtosis values for the experimental signal were calculated from day 2 to 13 and are
shown in Fig. 10 (on day 1 no signal was taken). The signal is decomposed by the EMD method as described
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in Section 3.3. The first 10 IMFs were found. Kurtosis values have been calculated of these IMFs and are
shown in Fig. 11.

5. Discussion and conclusion

The simulated signal shows that as the defect size increases the amplitude of the acceleration signal
increases. The experimental signal also shows the similar results. The crest factor and kurtosis values of the
simulated signal increase as the fault increases. The crest factor and kurtosis values of IMFs of the simulated
signal suggest that the crest factor and kurtosis values of high-frequency IMF (harmonics of gear mesh
frequency, IMF 1–5) increase as the fault increases. The crest factor and kurtosis values of middle-frequency
IMF (gear mesh frequency and below, IMF 5–7) first increase and than decrease. The crest factor and kurtosis
values of low-frequency IMF (gear rotational frequency and lower harmonics, IMF 8–10) almost remain
constant. Though the crest factor and kurtosis values give similar trends, kurtosis is a better indicator as
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Fig. 9. Experimental acceleration signal for days 2, 10–12.
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compared to crest factor. To analyse the experimental signal, only kurtosis value has been discussed. The
kurtosis value of raw experimental signal (without EMD) increases rapidly after day 11, which indicates
development of the fault. But, when the signal is decomposed by EMD and kurtosis value is calculated of each
IMF, fault can be detected on day 10, as the kurtosis value starts increasing from day 10 in the high-frequency
range.

Although experimental and numerical results look promising, the proposed vibration signature
methodology has to be tested on the other test rig also. More work is also required on the simulation of
tooth faults by varying defect width in both directions. Kurtosis analysis of IMF could be a good indicator for
early detection and characterization of faults.
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